Basic Classes of Mathematical Models

Following David Hestenes on page 6 of Modeling Instruction for STEM Education Reform, I wanted to create a poster like in my previous post of graphical methods and linearizing graphs but this time about the basic classes of mathematical models that Hestenes lists.  I’m not sure that I like all the equation gobbledegook, but I think students need something to which to aspire, so I just made it less prominent.  I’d also like a better presentation of some of the equations.


Update: You can now find source code for this and other posters in my GitHub repository.

\documentclass[final]{beamer} % beamer 3.10: do NOT use option hyperref={pdfpagelabels=false} !
%\documentclass[final,hyperref={pdfpagelabels=false}]{beamer} % beamer 3.07: get rid of beamer warnings
\mode<presentation> {  %% check for examples
\usetheme{default}    %% you should define your own theme e.g. for big headlines using your own logos
\setbeamertemplate{frametitle} {
\vspace{-1.2cm}\textbf{\insertframetitle} \par
\usepackage{amsmath,amsthm, amssymb, latexsym}
%\usepackage{times}\usefonttheme{professionalfonts}  % times is obsolete
%\usepackage[orientation=portrait,size=a0,scale=1.4,debug]{beamerposter}                       % e.g. for DIN-A0 poster
%\usepackage[orientation=portrait,size=a1,scale=1.4,grid,debug]{beamerposter}                  % e.g. for DIN-A1 poster, with optional grid and debug output
\usepackage[size=custom,width=45.72,height=60.96,scale=1.8,debug]{beamerposter}                     % e.g. for custom size poster (18in x 24in w/ printable 17in x 23in)
%\usepackage[orientation=portrait,size=a0,scale=1.0,printer=rwth-glossy-uv.df]{beamerposter}   % e.g. for DIN-A0 poster with rwth-glossy-uv printer check
% ...

\newcommand{\versus}{vs\ }

% From Hestenes' list of 4 basic mathematical models
\title[Mathematical Models]{Basic Classes of Mathematical Models}
\author[Vancil]{Brian Vancil}
\institute[Sumner]{Sumner Academy of Arts & Sciences}

\begin{frame}{Basic Classes of Mathematical Models}
\framesubtitle{with sample equations}
\begin{tabular}{P{.45\linewidth}P{.29\linewidth}@{\quad}>{\arraybackslash}P{.19\linewidth}} \toprule[.1em]
\normalsize Mathematical model & \normalsize Kind of change & \normalsize Graph shape  \\ \midrule[.1em] \addlinespace

\formatmm{Linear model}
\par \normalsize $\yy=A\xx+B$
\par $\dfrac{d\yy}{d\xx}=A$ &
Rate of change is constant. &
\imagetop{\begin{tikzpicture}[scale=\plotscale,domain=0:4,line width=\plotline,smooth]
\draw[color=plot] plot (\x,.6*\x+1);
\draw[<->] (0,4) -- (0,0) -- (4,0);
\\ \addlinespace \midrule \addlinespace

\formatmm{Quadratic model}
\par \normalsize $\yy=A\xx^{2}+B\xx+C$
\par $\dfrac{d^{2}\yy}{d\xx^{2}}=A$ &
Rate of change of rate of change is constant. &
\imagetop{\begin{tikzpicture}[scale=\plotscale,domain=0:4,line width=\plotline,smooth,samples=40]
\draw[color=plot] plot (\x,{4-0.7*(\x-2)*(\x-2)});
\draw[<->] (0,4) -- (0,0) -- (4,0);
\\ \addlinespace \midrule \addlinespace

\formatmm{Exponential model}
\par \normalsize $\yy=Ab^{\xx}$ or $\yy=Ae^{\frac{\xx}{\xi}}$
\par $\dfrac{d\yy}{d\xx}=\ln b\cdot\yy$ or $\dfrac{d\yy}{d\xx}=\frac{\yy}{\xi}$ &
Rate of change is proportional to amount. &
\imagetop{\begin{tikzpicture}[scale=\plotscale,domain=0:4,line width=\plotline,smooth,samples=40]
\draw[color=plot] plot (\x,{pow(pow(4,.25),\x)});
\draw[<->] (0,4) -- (0,0) -- (4,0);
\\ \addlinespace \midrule \addlinespace

\formatmm{Harmonic model}
\par \normalsize $\yy=A\cos\left(k\xx+\phi\right)$ or $\yy=A\sin\left(k\xx+\phi'\right)$ or $\yy=\mathfrak{Re}\left\{Ae^{i(k\xx+\phi)}\right\}$
\par $\dfrac{d^{2}\yy}{d\xx^{2}}=-k^{2}\yy$ &
Rate of change of rate of change is proportional to amount. &
\imagetop{\begin{tikzpicture}[scale=\plotscale,domain=0:4,line width=\plotline,smooth,samples=40]
\draw[color=plot] plot (\x,{2*cos((\x*6.28-1)r)});
\draw[->] (0,-2) -- (0,2);
\draw[->] (0,0) -- (4,0);
\\ \addlinespace  \midrule \addlinespace

\formatmm{Sudden change model}
\par \normalsize $\yy=A\ \theta(\xx-x_{0})+B$
\par $\dfrac{d\yy}{d\xx}=A\ \delta(\xx-x_{0})$ &
Change is finite and instantaneous. &
\imagetop{\begin{tikzpicture}[scale=\plotscale,domain=0:4,line width=\plotline,smooth,samples=40]
\draw[color=plot, domain=0:2] plot (\x,1);
\draw[color=plot, domain=2:4] plot (\x,3);
\draw[<->] (0,4) -- (0,0) -- (4,0);
\\ \addlinespace


One thought on “Basic Classes of Mathematical Models

  1. Pingback: Rules of Ten: rules of thumb for data collection and processing | Fock Physics

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )


Connecting to %s